2017-09-29
Jonas Kersulis
kersulis@umich.eduM6.1.2
M6.1.3
All NESTA test cases on the new format. Running all checks on NESTA to demonstrate that the NESTA benchmarks in the new format are well-formed.41 networks total:
Previous work made translation to GRG format in pu easy.
Categories: tiny (<20 nodes), small (20-1k), medium (1k-5k), large (5k+)
$$\text{Pr}(k=x)=\frac{n_k}{n},$$ where $n_k$ is the number of nodes with degree $k$.
How many buses are driving up the mean degree?
Can only identify extreme outliers.
Extent to which nodes of like degree connect to each other. $$ r = \frac{\sum_{xy}xy(e_{xy} - a_xa_y)}{\sigma_a^2} $$
$r$ is between -1 (perfect disassortativity) and 1 (perfect assortativity).
Reproducing figure from literature (with more data points)
Paul Cuffe wrote a letter to Transactions noting the assortativity anomaly of the large PEGASE network.
Use 1 and 2 standard deviations as guidelines:
Important: how many nodes are involved in the rich club? Dozens, or just two? Sensible starting point:
Compute and check metrics on GRG-format networks in a directory:
import grg_metrics
metrics = grg_metrics.compute_metrics('path/to/folder/')
msg = grg_metrics.analyze_metrics(metrics)
Summarize warnings for a particular network:
>>> msg.loc['nesta_case240_wecc']
max_degree
mean_degree
median_degree Warning: 'nesta_case240_wecc' has median degre...
degree_assortativity
rich_club
Read full warning message:
>>> msg.loc['nesta_case240_wecc'].median_degree
"Warning: 'nesta_case240_wecc' has median degree 3, which is rare for networks larger than 200 buses."
Use the checks on the test networks used to develop them.
max_degree | mean_degree | median_degree | degree_assortativity | rich_club | |
---|---|---|---|---|---|
nesta_case13659_pegase | Error | Error | Warning | ||
nesta_case9241_pegase | Error | Warning | Error | Warning | |
france | Warning | ||||
nesta_case6515_rte | Warning | ||||
nesta_case6495_rte | Warning | ||||
nesta_case6470_rte | Warning | ||||
nesta_case6468_rte | Warning |
max_degree | mean_degree | median_degree | degree_assortativity | rich_club | |
---|---|---|---|---|---|
france_ehv_lyon_hv | Warning | Warning | |||
nesta_case3375wp_mp | Warning | ||||
nesta_case3120sp_mp | |||||
nesta_case3012wp_mp | |||||
nesta_case2869_pegase | Warning | Warning | |||
nesta_case2868_rte | Warning | ||||
nesta_case2848_rte | Warning | Warning | |||
nesta_case2746wp_mp | |||||
nesta_case2746wop_mp | |||||
nesta_case2737sop_mp | |||||
nesta_case2736sp_mp | |||||
nesta_case2383wp_mp | |||||
nesta_case2224_edin | Warning | ||||
case_ACTIVSg2000 | Warning | ||||
nesta_case1951_rte | Warning | ||||
nesta_case1888_rte | Warning | ||||
france_ehv | Warning | ||||
nesta_case1460wp_eir | Warning | ||||
nesta_case1397sp_eir | Warning | ||||
nesta_case1394sop_eir | Warning | ||||
nesta_case1354_pegase | Warning |
max_degree | mean_degree | median_degree | degree_assortativity | rich_club | |
---|---|---|---|---|---|
case_ACTIVSg500 | Warning | ||||
marseille_sous_realtor | |||||
nesta_case300_ieee | Warning | Warning | |||
nesta_case240_wecc | Warning | ||||
case_ACTIVSg200 | Warning | Warning | |||
nesta_case189_edin | |||||
nesta_case162_ieee_dtc | Warning | Warning | |||
uiuc_150bus | |||||
nesta_case118_ieee | Warning | ||||
nesta_case89_pegase | Error | Error | Warning | Warning | |
nesta_case73_ieee_rts | |||||
nesta_case57_ieee | Warning | ||||
nesta_case39_epri | |||||
nesta_case30_ieee | |||||
nesta_case30_fsr | |||||
nesta_case30_as | |||||
nesta_case29_edin | Warning | ||||
nesta_case24_ieee_rts |
max_degree | mean_degree | median_degree | degree_assortativity | rich_club | |
---|---|---|---|---|---|
nesta_case14_ieee | |||||
nesta_case9_wscc | Error | ||||
nesta_case6_ww | Warning | Warning | |||
nesta_case6_c | |||||
nesta_case5_pjm | |||||
nesta_case4_gs | |||||
nesta_case3_lmbd |
No electrical data
With electrical data
Interesting data...
...but:
Electrical distance information is rich:
Tough to distill into intuitive, actionable metrics.
Our metrics can detect unusual connectivity patterns and modeling errors, but we'd really like metrics that predict computational behavior.
Metrics that didn't pan out were still worth studying! Example: